Abstract

Inferring a diffusion equation from discretely observed measurements is a statistical challenge of significant importance in a variety of fields, from single-molecule tracking in biophysical systems to modeling financial instruments. Assuming that the underlying dynamical process obeys a d-dimensional stochastic differential equation of the form dx_t = b(x_t)dt + \Sigma(x_t)dw_t, we propose neural network-based estimators of both the drift b and the spatially-inhomogeneous diffusion tensor D = \Sigma\Sigma^T/2 and provide statistical convergence guarantees when b and D are s-Hölder continuous. Notably, our bound aligns with the minimax optimal rate N^{-\frac{2s}{2s+d}} for nonparametric function estimation even in the presence of correlation within observational data, which necessitates careful handling when establishing fast-rate generalization bounds. Our theoretical results are bolstered by numerical experiments demonstrating accurate inference of spatially-inhomogeneous diffusion tensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.