Abstract

We study statistical solutions of the incompressible Euler equations in two dimensions with vorticity in Lp, 1≤p≤∞, and in the class of vortex-sheets with a distinguished sign. Our notion of statistical solution is based on the framework due to Bronzi, Mondaini and Rosa in [4]. Existence in this setting is shown by approximation with discrete measures, concentrated on deterministic solutions of the Euler equations. Additionally, we provide arguments to show that the statistical solutions of the Euler equations may be obtained in the inviscid limit of statistical solutions of the incompressible Navier-Stokes equations. Uniqueness of trajectory statistical solutions is shown in the Yudovich class.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.