Abstract
In this article, we study the statistical solution of the nonautonomous discrete Selkov model. First, we show the existence of a pullback- attractor for the system and establish the existence of a unique family of invariant Borel probability measures carried by the pullback- attractor. Then we further prove that the family of invariant Borel probability measures is a statistical solution for the discrete system and satisfies a Liouville-type theorem. Finally, we demonstrate that the invariant property of the statistical solution is indeed a particular case of the Liouville-type theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.