Abstract

Recent experiments on atomic-scale metallic contacts have shown that the quantization of the conductance appears clearly only after the average of the experimental results. Motivated by these results we have analyzed a simplified model system in which a narrow neck is randomly coupled to wide ideal leads, both in absence and presence of time reversal invariance. Based on Random Matrix Theory we study analytically the probability distribution for the conductance of such system. As the width of the leads increases the distribution for the conductance becomes sharply peaked close to an integer multiple of the quantum of conductance. Our results suggest a possible statistical origin of conductance quantization in atomic-scale metallic contacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call