Abstract
Monitoring activities in a certain region from video data is an important surveillance problem. The goal is to learn the pattern of normal activities and detect unusual ones by identifying activities that deviate appreciably from the typical ones. We propose an approach using statistical shape theory based on the shape model of D.G. Kendall et al. (see and Shape Theory, John Wiley and Sons, 1999). In a low resolution video, each moving object is best represented as a moving point mass or particle. In this case, an activity can be defined by the interactions of all or some of these moving particles over time. We model this configuration of the particles by a polygonal shape formed from the locations of the points in a frame and the activity by the deformation of the polygons in time. These parameters are learned for each typical activity. Given a test video sequence, an activity is classified as abnormal if the probability for the sequence (represented by the mean shape and the dynamics of the deviations), given the model, is below a certain threshold The approach gives very encouraging results in surveillance applications using a single camera and is able to identify various kinds of abnormal behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.