Abstract
Automatic segmentation of organs from medical images is indispensable for the computer-assisted medical applications. Statistical Shape Models (SSMs) based scheme has been developed as an accurate and robust approach for extraction of anatomical structures, in which a crucial step is the need to place the sampled points (landmarks) with well corresponding across the whole training set. On the one hand, the correspondence of landmarks is related the quality of shape model. On the other hand, in clinical application some key positions of landmarks should be specified by physicians referring to the anatomic structure. In this paper, we develop an interactive method to build SSM that the landmark distribution can be modified manually without influencing the model quality. We extend an existing remeshing method to produce a model prototype in advance and surface features driven registration to insure the universal optimization of correspondence. The key landmarks are fixed during the prototype generation. We experimented and evaluated the proposed SSM method for lung regions, the deformations of which are considerable large.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.