Abstract
In any online decision support system, the backbone is a data warehouse. In order to facilitate rapid response to complex business decision support queries, it is a common practice to materialize an appropriate set of the views at the data warehouse. However, it typically requires the solution of the Materialized View Selection (MVS) problem to select the right set of views to materialize in order to achieve a certain level of service given a limited amount of resource such as materialization time, storage space, or view maintenance time. Dynamic changes in the source data and the end users requirement necessitate rapid and repetitive instantiation and solution of the MVS problem. In an online decision support context, time is of the essence in finding acceptable solutions to this problem. In this chapter, we have used a novel approach to instantiate and solve four versions of the MVS problem using three sampling techniques and two databases. We compared these solutions with the optimal solutions corresponding to the actual problems. In our experimentation, we found that the sampling approach resulted in substantial savings in time while producing good solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Data Warehousing and Mining
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.