Abstract

AbstractThis study proposes a statistical regression scheme to forecast tropical cyclone (TC) intensity at 12, 24, 36, 48, 60, and 72 h in the northwestern Pacific region. This study utilizes best track data from the Shanghai Typhoon Institute (STI), China, and the Joint Typhoon Warning Center (JTWC), United States, from 2000 to 2015. In addition to conventional factors involving climatology and persistence, this study pays close attention to the land effect on TC intensity change by considering a new factor involving the ratio of seawater area to land area (SL ratio) in the statistical regression model. TC intensity changes are investigated over the entire life-span, over the open ocean, near the coast, and after landfall. Data from 2000 to 2011 are used for model calibration, and data from 2012 to 2015 are used for model validation. The results show that the intensity change during the previous 12 h (DVMAX), the potential future intensity change (POT), and the area-averaged (200–800 km) wind shear at 1000–300 hPa (SHRD) are the most significant predictors of the intensity change for TCs over the open ocean and near the coast. Intensity forecasting for TCs near the coast and over land is improved with the addition of the SL ratio compared with that of the models that do not consider the SL ratio. As this study has considered the TC intensity change over the entire TC life-span, the proposed models are valuable and practical for forecasting TC intensity change over the open ocean, near the coast, and after landfall.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call