Abstract
This paper introduces and demonstrates four new statistical attacks against the Kirchhoff-Law-Johnson-Noise (KLJN) secure key exchange scheme. The attacks utilize compromised random number generators (RNGs) at Alice’s/Bob’s site(s). The case of partial correlations between Alice’s/Bob’s and Eve’s probing noises is explored, that is, Eve’s knowledge of Alice’s and Bob’s noises is limited but not zero. We explore the bilateral situation where Eve has partial knowledge of Alice’s and Bob’s RNGs. It is shown that in this situation Eve can crack the secure key bit by taking the highest cross-correlation between her probing noises and the measured voltage noise in the wire. She can also crack the secure key bit by taking the highest cross-correlation between her noise voltages and her evaluation of Alice’s/Bob’s noise voltages. We then explore the unilateral situation in which Eve has partial knowledge of only Alice’s RNG thus only those noises (of Alice and Eve) are correlated. In this situation, Eve can still crack the secure key bit, but for sufficiently low error probability, she needs to use the whole bit exchange period for the attack. The security of the KLJN key exchange scheme, similarly to other protocols, necessitates that the RNG outputs are truly random for Eve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.