Abstract
A general and rigorous quantum method is proposed for studying capture dynamics between two diatomic molecules in full dimensionality. By solving the time-independent Schrödinger equation with proper boundary conditions, this method is ideally suited for studying quantum dynamics of cold and ultracold reactions. To illustrate its applicability, the capture dynamics between ultracold KRb molecules is characterized in full six dimensions for the first time using a first-principles based long-range interaction potential. The calculated capture rates for collisions involving distinguishable and indistinguishable 40K87Rb molecules are in good agreement with the experiment and exhibit clear Wigner threshold behaviors. Predictions for ultracold collisions between internally excited 40K87Rb suggest minor changes in the loss rate, consistent with experimental observations in similar systems.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.