Abstract

The Chandler wobble excitation function (hereinafter, geodetic excitation) is obtained by removing the seasonal components and low frequency components with periods from several years to decades from the polar motion excitation function derived from SPACE2002 series. The geophysical excitation functions of the individual AAM, OAM, HAM, and two combined excitations of the AAM + OAM and AAM + OAM + HAM at 1d, 5d, 1m and 3m intervals are statistically tested for the hypothesis of the normality, and then tested for the hypotheses of identical distribution between the geodetic and the geophysical excitations. The results show that, among the total 16 components of the two combined excitation functions at 1d, 5d, 1m and 3m intervals, most follow random normal processes, the hypotheses of identical distribution between the geodetic excitation and the two combined excitation are acceptable, while most of the hypotheses of identical distribution between the geodetic excitation and the individual excitations of the AAM, OAM, and HAM are rejectable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call