Abstract

Abstract We present an analysis of the nebular spectra of 103 stripped-envelope (SE) supernovae (SNe) collected from the literature and observed with the Subaru Telescope from 2002 to 2012, focusing on [O i] λλ6300, 6363. The line profile and width of [O i] are employed to infer the ejecta geometry and the expansion velocity of the inner core; these two measurements are then compared with the SN subtypes, and further with the [O i]/[Ca ii] ratio, which is used as an indicator of the progenitor CO core mass. Based on the best-fit results of the [O i] profile, the objects are classified into different morphological groups, and we conclude that the deviation from spherical symmetry is a common feature for all types of SESNe. There is a hint (at the ∼1σ level) that the distributions of the line profile fractions are different between canonical SESNe and broad-line SNe Ic. A correlation between [O i] width and [O i]/[Ca ii] is discerned, indicating that the oxygen-rich material tends to expand faster for objects with a more massive CO core. Such a correlation can be utilized to constrain the relation between the progenitor mass and the kinetic energy of the explosion. Further, when [O i]/[Ca ii] increases, the fraction of objects with Gaussian [O i] profile increases, while those with double-peaked profile decreases. This phenomenon connects ejecta geometry and the progenitor CO core mass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call