Abstract

A method to describe the metal-insulator transition (MIT) in disordered systems is presented. For this purpose the statistical properties of the eigenvalue spectrum of the Anderson Hamiltonian are considered. As the MIT corresponds to the transition between chaotic and nonchaotic behavior, it can be expected that the random matrix theory enables a qualitative description of the phase transition. We show that it is possible to determine the critical disorder in this way. In the thermodynamic limit the critical point behavior separates two different regimes: one for the metallic side and one for the insulating side.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.