Abstract

The first statistical results in sunspot distributions in 1996–2004 obtained from the Solar Feature Catalogues (SFC) are presented. A novel robust technique is developed for automated identification of sunspots on SOHO/MDI white-light (WL) full-disk solar images. The technique applies image standardization procedures for elimination of the limb darkening and non-circular image shape, uses edge-detection methods to find the sunspot candidates and their edges and morphological operations to smooth the features and fill in gaps. The detected sunspots are verified with the SOHO/MDI magnetograms by strong magnetic fields being present in sunspots. A number of physical and geometrical parameters of the detected sunspot features are extracted and stored in the relational SFC database including umbra/penumbra masks in the form of run-length data encoding of sunspot bounding rectangles. The detection results are verified by comparison with the manual daily detection results in Meudon and Locarno Observatories in 2002 and by correlation (about 96%) with the 4 year sunspot areas produced manually at NOAA. Using the SFC data, sunspot area distributions are presented in different phases of the solar cycle and hemispheres which reveals a periodicity of the north–south asymmetry with a period of about 7–8 years. The number of sunspots increases exponentially with the area decrease with the index slightly increasing from −1.15 (1997) to −1.34 (2001).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.