Abstract

We compute single-particle energy spectra for a one-body Hamiltonian consisting of a two-dimensional deformed harmonic oscillator potential, the Rashba spin–orbit coupling and the Zeeman term. To investigate the statistical properties of the obtained spectra as functions of deformation, spin–orbit and Zeeman strengths we examine the distributions of the nearest neighbor spacings. We find that the shapes of these distributions depend strongly on the three potential parameters. We show that the obtained shapes in some cases can be well approximated with the standard Poisson, Brody and Wigner distributions. The Brody and Wigner distributions characterize irregular motion and help identify quantum chaotic systems. We present a special choice of deformation and spin–orbit strengths without the Zeeman term which provide a fair reproduction of the fourth-power repelling Wigner distribution. By adding the Zeeman field we can reproduce a Brody distribution, which is known to describe a transition between the Poisson and linear Wigner distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.