Abstract

Statistical properties of MHD turbulence and the mechanism of turbulent dynamo are investigated by direct numerical simulations of three-dimensional MHD equations. It is assumed that the turbulent field has a high symmetry and that the fluid has hyperviscosity and hypermagnetic diffusivity. An external force is exerted on the fluid as kinetic energy and helicity sources. The main concern of the present study is whether magnetic fields of scales comparable to the dominant fluid motions can be generated or not. It is shown that the turbulent dynamo is effective if hypermagnetic diffusivity is smaller than a critical value. The total energy spectrum is close to the k−5/3 power law in the inertial range. The energy transfer between kinetic and magnetic fields is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.