Abstract
We study the ergodic and statistical properties of a class of maps of the circle and of the interval of Lorenz type which present indifferent fixed points and points with unbounded derivative. These maps have been previously investigated in the physics literature. We prove in particular that correlations decay polynomially, and that suitable limit theorems (convergence to stable laws or central limit theorem) hold for Hölder continuous observables. Moreover, we show that the return and hitting times are exponentially distributed in the limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.