Abstract

We evidence experimentally the statistical properties of frequency shifted feedback (FSF) lasers through measurements of the homodyne beat signal and interferometric autocorrelation of a dye FSF laser at the output of a Michelson interferometer. The FSF laser is found to show thermal fluctuations and photon bunching. Moreover whereas the degree of first-order coherence vanishes beyond the coherence length of the FSF source, the degree of second-order coherence exhibits periodic revivals far beyond the coherence length, with a period equal to the cavity roundtrip time. Our observations are in good agreement with the theoretical treatment of Yatsenko et al. [L.P. Yatsenko, B.W. Shore, K. Bergmann, Opt. Comm. 236 (2004) 183] and validate the description of the output field of a FSF laser by a broadband cyclostationary thermal field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.