Abstract

We study the statistical properties of contact vectors, a construct to characterize a protein's structure. The contact vector of an N-residue protein is a list of N integers n(i), representing the number of residues in contact with residue i. We study analytically (at mean-field level) and numerically the amount of structural information contained in a contact vector. Analytical calculations reveal that a large variance in the contact numbers reduces the degeneracy of the mapping between contact vectors and structures. Exact enumeration for lengths up to N=16 on the three-dimensional cubic lattice indicates that the growth rate of number of contact vectors as a function of N is only 3% less than that for contact maps. In particular, for compact structures we present numerical evidence that, practically, each contact vector corresponds to only a handful of structures. We discuss how this information can be used for better structure prediction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call