Abstract

According to the combinational binomial-negative-binomial distribution, we propose a binomial-negative-binomial combinational optical field state, which can be generated in the process of a Fock state |m>m| passing through a quantum-mechanical diffusion channel. We derive the second-order coherence degree formula, g(2)(t) =2-((m2+m)/(m+κt2)), which is the diffusion constant. We find that in the process of the Fock state undergoing quantum diffusion and becoming classical, the corresponding photon statistics evolves from sub-Poissonian distribution to Poisson distribution and finally goes to a chaotic state. We also find that the more photons in the initial Fock state, the longer time is needed for quantum decoherence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call