Abstract

The statistical selectivity models were developed for four different Fischer–Tropsch synthesis product range, including methane (CH4), light olefins (C2=C4), light paraffins (C2–C4), and long-chain hydrocarbons (C5+), based on the experimental data obtained over thirteen γ-Al2O3 supported cobalt-based catalysts with different cobalt particle and pore sizes. The input variables consist of cobalt metal particle size and catalyst pore size. The cubic and quadratic polynomial equations were fitted to the experimental data, however, the mathematical models were subjected to model reduction for the enhancement of model adequacy, which was investigated through ANOVA. The multi-objective optimization revealed that the maximum C5+ selectivity (84.150%) could be achieved at the cobalt particle size and pore sizes of 14.764 and 23.129 nm, respectively, while keeping the selectivity to other hydrocarbon products minimum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.