Abstract
This study compares four models for industrial condition monitoring including a principal components analysis (PCA) approach and three deep learning models, one of which is a new, lightweight version of another. We also propose a simple attention mechanism for enchancing deep learning models with better predictions and feature importance. Two datasets are used, one simulated from the Tennessee Eastman Process, the other from two feedwater pumps at a Danish combined heat and power plant. Our final results show evidence in favour of the PCA-based approach as it has detection ability comparable to the deep learning approaches as well as faster training time, fewer hyperparameters, as well as robustness to changing operating conditions. We conclude the paper by putting into perspective the importance of building up complexity incrementally with a recommendation to start modelling with simpler and well-tested models before the adoption of more advanced, less transparent models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.