Abstract

Orthogonal partial least squares regression (OPLS) is being increasingly adopted as an alternative to partial least squares (PLS) regression due to the better generalization that can be achieved. Particularly in multivariate batch statistical process control (BSPC), the use of OPLS for estimating nominal trajectories is advantageous. In OPLS, the nominal process trajectories are expected to be captured in a single predictive principal component while uncorrelated variations are filtered out to orthogonal principal components. In theory, OPLS will yield a better estimation of the Hotelling’s T2 statistic and corresponding control limits thus lowering the number of false positives and false negatives when assessing the process disturbances. Although OPLS advantages have been demonstrated in the context of regression, its use on BSPC was seldom reported. This study proposes an OPLS-based approach for BSPC of a cocrystallization process between hydrochlorothiazide and p-aminobenzoic acid monitored on-line with near infrared spectroscopy and compares the fault detection performance with the same approach based on PLS. A series of cocrystallization batches with imposed disturbances were used to test the ability to detect abnormal situations by OPLS and PLS-based BSPC methods. Results demonstrated that OPLS was generally superior in terms of sensibility and specificity in most situations. In some abnormal batches, it was found that the imposed disturbances were only detected with OPLS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call