Abstract

Sri Lanka receives most rainfall during October to December (OND). Here we construct multiple linear regression models to forecast the OND Sri Lankan rainfall during 1979-2012 for lead times of 1 and 2 months. Correlation analysis was used to examine the relationship between Sri Lankan OND rainfall and global sea surface temperature (SST) anomalies. Three independent predictors were identified through partial least square regression method which includes the southern Atlantic SST tendency, southern Pacific SST tendency and western Pacific and Maritime Continent SST tendency at two different lead times. Three-year-out cross validation concludes that the multiple linear regression models can produce forecast the OND rainfall forecast at correlation coefficient skill of 0.69 and 0.68 for the 1 and 2 month lead times respectively. The physical processes associated with these three predictors show that they contribute to increase in OND rainfall of Sri Lanka.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.