Abstract

This paper discusses power and sample-size computation for likelihood ratio and Wald testing of the significance of covariate effects in latent class models. For both tests, asymptotic distributions can be used; that is, the test statistic can be assumed to follow a central Chi-square under the null hypothesis and a non-central Chi-square under the alternative hypothesis. Power or sample-size computation using these asymptotic distributions requires specification of the non-centrality parameter, which in practice is rarely known. We show how to calculate this non-centrality parameter using a large simulated data set from the model under the alternative hypothesis. A simulation study is conducted evaluating the adequacy of the proposed power analysis methods, determining the key study design factor affecting the power level, and comparing the performance of the likelihood ratio and Wald test. The proposed power analysis methods turn out to perform very well for a broad range of conditions. Moreover, apart from effect size and sample size, an important factor affecting the power is the class separation, implying that when class separation is low, rather large sample sizes are needed to achieve a reasonable power level.

Highlights

  • In recent years, latent class (LC) analysis has become part of the standard statistical toolbox of researchers in the social, behavioral, and health sciences

  • We focus on testing hypotheses about the γ parameters, the most common of which is testing the statistical significance for the effect of covariate k on the latent class memberships

  • Hypotheses concerning the covariate effects on latent class membership are tested using a likelihood ratio (LR), Wald, or score (Lagrange multiplier) test

Read more

Summary

Introduction

Latent class (LC) analysis has become part of the standard statistical toolbox of researchers in the social, behavioral, and health sciences. A considerable amount of articles have been published in which LC models are used (a) to identify subgroups of subjects with similar behaviors, attitudes, or preferences, and (b) to investigate whether the respondents’ class memberships can be explained by variables such as age, gender, educational status, and type of treatment. This latter type of use is often referred to as LC analysis with covariates or concomitant variables. This is a great omission since a study using an under-powered design may lead to an enormous waste of resources

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.