Abstract

The brown macroalgae Bifurcaria bifurcata was valued and used to develop a carbonaceous material activated by H2SO4 (AC-BB@H2SO4), with the goal of assessing its adsorption ability against Bisphenol A (BPA). During the adsorption experiments, the effects of the adsorbent dose, solution pH, and contact time were examined, and the results were m = 0.4 g/L, pH = 8.3, and t = 120 min, with an elimination yield of 91.6 %. With comparatively high R2 values, the pseudo-second-order kinetic model perfectly fitted the experimental data. Langmuir's model was found to be the best appropriate for describing the adsorption equilibrium of BPA on AC-BB@H2SO4. The thermodynamic findings show that BPA adsorption on AC-BB@H2SO4 was spontaneous, favorable, and endothermic in nature. Even after six cycles of reuse, regeneration testing demonstrated that our adsorbent could eliminate BPA by >50 %. The BPA adsorption mechanism's statistical physics control parameters were determined and analyzed. BPA's adsorption energies were <40 kJ/mol, indicating that the interactions between BPA and AC-BB@H2SO4 were governed by physical forces (i.e., hydrogen bonding and van der Waals and electrostatic interactions). All of these intriguing findings indicate that our carbonaceous material might have direct ramifications in the field of wastewater treatment, notably for the clearance of BPA, which is difficult to biodegrade.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call