Abstract
In this paper, water sorption isotherms into date kernels give interesting insights about the sorption mechanism. The equilibrium adsorption data expressing the change in moisture content of date kernels were collected at three different temperatures using the static gravimetric technique. The adsorption isotherm profiles demonstrated that this process was performed via an infinite number of layers. A modified form of the Brunauer, Emett and Teller (BET) model is obtained based on the use of the real gas law and statistical physics treatment so the interaction between molecules is considered. This advanced model is used to fit experimental isotherms by numerical simulation. The sorption mechanism is theoretically explained by the parameters that could be related to the water adsorption process. Based on fitting results, we find that the number of molecules per site (parameter n) has a linear tendency with temperature thanks to the thermal agitation effect. A deeper analysis of adsorption energy demonstrates that the water vapors are physisorbed in the date kernels. Through the exploitation of our model, three classic thermodynamic functions are investigated to interpret the macroscopic aspect of the adsorption mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.