Abstract
Equilibrium states of large layered neural networks with differentiable activation function and a single, linear output unit are investigated using the replica formalism. The quenched free energy of a student network with a very large number of hidden units learning a rule of perfectly matching complexity is calculated analytically. The system undergoes a first order phase transition from unspecialized to specialized student configurations at a critical size of the training set. Computer simulations of learning by stochastic gradient descent from a fixed training set demonstrate that the equilibrium results describe quantitatively the plateau states which occur in practical training procedures at sufficiently small but finite learning rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.