Abstract
A pattern recognition approach was applied to the analysis of ultrasonic echo signals from two classes of aluminum-to-aluminum adhesive bonds. The two classes differed in the surface preparation of the adherends prior to bonding, resulting in different interfacial properties of the joints. These properties have a crucial effect on the long-term adhesive properties of the specimens. Application of advanced signal processing and pattern recognition techniques enabled the classification of the joints according to the surface preparation of the adherends, based on features extracted from the ultrasonic signals. The statistics yielded an upper bound for the probability of mis-classification of the specimens. The sensitivity of certain features, extracted from the ultrasonic signal, to the interfacial characteristics of the specimens is explained by means of the natural frequencies of a joint's components and surface condition of the adherends. This leads to a method for selecting the optimal probe frequency for carrying out the ultrasonic inspection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.