Abstract

This article presents a baseline-free, model-driven, statistical damage detection and imaging framework for guided waves measured from partial (i.e. non-dense) wavefield scans. Wavefield analysis is an effective non-contact technique for non-destructive evaluation. Yet, there are several limitations to practically implement wavefield methods. These limitations include slow data acquisition and a lack of statistical reliability. Our approach addresses both of these challenges. We use sparse wavenumber analysis, sparse wavenumber synthesis, and data-fitting optimization to accurately model damage-free wavefield data. We then combine this model with matched field processing to image damage from a small number of partial wavefield measurements. We further derive a hypothesis test based on extreme value theory to statistically detect damage. We test our framework with Lamb wave measurements from a steel plate. With 70 experimental wavefield measurements, we achieve an empirical probability of damage detection of more than 98%, an empirical probability of false alarm of less than 0.17%, and an accurate image of the damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call