Abstract
A new concept of statistically e-uniform Cauchy sequences is introduced to study statistical order convergence, statistically relatively uniform convergence, and norm statistical convergence in Riesz spaces. We prove that, for statistically e-uniform Cauchy sequences, these three kinds of convergence for sequences coincide. Moreover, we show that the statistical order convergence and the statistically relatively uniform convergence need not be equivalent. Finally, we prove that, for monotone sequences in Banach lattices, the norm statistical convergence coincides with the weak statistical convergence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.