Abstract

The present study is mainly concerned for the development of an optimal ultrasound-assisted extraction (UAE) condition for phycobiliproteins (PBPs) from Oscillatoria sp. (BTA 170) using Taguchi methodology. Four process parameters viz. solid to liquid ratio, duty cycle, electrical acoustic intensity, and pH, for UAE were optimized using Taguchi methodology for enhanced PBPs extraction. The ratio of signal to noise (S/N) was used to compute the optimized condition required to attain a higher yield of PBPs, the average performance of individual parameter and corresponding interactive effects. The statistically significant parameters with their contribution were assessed using Analysis of variance (ANOVA). Results showed that duty cycle contributed the maximum influence (30.81%) on phycocyanin (PC) extraction followed by a solid liquid ratio (28.62%), pH (22.46%) and electrical acoustic intensity (18.10%). The highest contribution on the extraction of phycoerythrin (PE) was found from pH (33.16%), followed by duty cycle (31.57%), solid to liquid ratio (22.83%) and electrical acoustic intensity (12.45%). For extraction of allophycocyanin (APC), the duty cycle, solid to liquid ratio, pH and electrical acoustic intensity contributed 29.47, 29.07, 29.03, and 12.43% respectively. Results obtained from Taguchi methodology indicated that enhanced PC (94.10%), PE (95.20%) and APC (90.54%) can be achieved with solid-liquid ratio (0.2 g/ml), electrical acoustic intensity (16.99 w/cm2), duty cycle (75%), and pH 7 than the yield of PBPs obtained under unoptimized condition. In the present study, higher yield of PC (38.99%), PE (20.84%), and APC (11.93%) were attained with UAE compared to yield obtained from homogenized Oscillatoria sp. BTA 170 using 0.05 M phosphate buffer. Batch extraction data of PBPs under UAE was fitted well with the second order model. The values of second-order rate constant (k) were computed as 6.66 × 10-4, 64.09 × 10-4 and 1.49 × 10-4 L/mg/min for extraction of PC, PE and APC respectively. The PBPs exhibited significant antioxidant property and hydrogen peroxide scavenging activity, which were increased with the enhancement of PBPs concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call