Abstract

In this study, pine needles were exploited for bioethanol production. Pretreatment is the first and foremost step towards better yield of bioethanol from lignocellulosic biomass. In this study, NaOH pretreatment of pine needles was optimized by the Box Behnken design. Substrate characterization was done by using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Maximum cellulose (90%) and total phenolic compounds (51.03 ± 0.002 mM) were recorded under optimized conditions, and structural analysis also revealed the significance of the pretreatment. High F and R2 values and low P values indicated the accuracy and validity of the model. Pretreated biomass was further subjected to saccharification using commercial, as well as indigenous cellulase. Maximum saccharification (49.2%) was observed with commercial cellulase, which led to a 7% ethanol yield employing Saccharomyces cerevisiae. Maximum ethanol yield (7%) was observed in NaOH pretreated biomass. Results proposed that Pinus spp. needles could be potential cellulosic biomass for bioethanol production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call