Abstract

Response surface methodology (RSM), employing the fractional factorial design (FFD) was used to optimize the fermentation medium for the production of glucose oxidase (GOD) from a marine isolate (NRC9) of Aspergillus niger under submerged fermentation. The design was employed by selecting glucose, CaCO3, ammonium phosphate and MgSO4 concentrations as model factors by ‘one variable at a time’ experiment. A second-order quadratic model and response surface method showed that the optimum concentrations (g/l) glucose, 100; CaCO3, 25; (NH4)2HPO4, 1.8 and 0.4 of MgSO4, resulted in an improvement of GOD production (170 ± 0.88 U/ml) as compared to the initial level (109.81 ± 1.38 U/ml) after four days of incubation at 200 rpm and 30 °C, whereas its predicted value obtained by the quadratic model was 164.36 U/ml. Analysis of variance (ANOVA) showed a high coefficient of determination value (R 2) of 0.967, ensuring a satisfactory adjustment of the quadratic model with the experimental data. This is the first report on production of glucose oxidase from a marine fungal isolate, Aspergillus niger NRC9, using statistical experimental design and response surface methodology in optimization of its production under submerged fermentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.