Abstract

Botryococcus braunii has an outstanding ability to produce lipid; however, it is a slow-growing green microalgae. Statistical optimization of growth media was performed to faster growth and to increase lipid concentration. The effect of media composition on the growth of B. braunii LB572 was examined using fractional factorial design and central composite design. The media components examined include sodium carbonate, potassium phosphate, calcium chloride, magnesium sulfate, ferric citrate, and sodium nitrate. The results indicated that potassium phosphate and magnesium sulfate were major impact factors. The optimum concentrations of potassium phosphate and magnesium sulphate were found to be 0.058 and 0.09 g/L, respectively, for growth and 0.083 and 0.1 g/L, respectively, for lipid production. These values were validated using bubble column photobioreactors. Lipid productivity increased to 0.19 g/L/day in lipid-optimized media, with an average biomass productivity of 0.296 g/L/day and 64.96% w/w. In growth-optimized media, lipid productivity was 0.18 g/L/day, with an average biomass productivity of 0.304 g/L/day and 59.56% w/w.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.