Abstract

The current study focusses on the optimization of Copper oxide nanoparticles (CuO NPs) biosynthesis with Alternanthera sessilis (L.) extract using response surface methodology (RSM). The effect of time, pH, and extract to metal concentration ratio on the yield of synthesized nanoparticles (NPs) were estimated using Box–Behnken design. The influence of each of the parameters, as mentioned earlier, was determined by synthesizing nanoparticles under different conditions. A total of 29 experimental runs were carried out to estimate the crucial parameters. Extract to the metal ratio was found to be the vital parameter for yield optimization based on the p-values (p-value < 0.05). The physicochemical property of NPs, like size, was estimated to be in the range of 10-20 nm. In zebrafish, 48 hpf and 72 hpf were measured at 90 µM to reduce dysfunction and mortality during organ development. These results can have a valuable impact on eco-toxicological effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.