Abstract

The objective of the present investigation is to formulate gastro retentive floating drug delivery systems (GRFDDS) of propranolol HCl by central composite design and to study the effect of formulation variables on floating lag time, D1hr (% drug release at 1 hr) and t90 (time required to release 90% of the drug). 3 factor central composite design was employed for the development of GRFDDS containing novel semi synthetic polymer carboxymethyl ethyl cellulose (CMEC) as a release retarding polymer. CMEC, sodium bicarbonate and Povidone concentrations were included as independent variables. The tablets were prepared by direct compression method and were evaluated for in vitro buoyancy and dissolution studies. From the polynomial model fitting statistical analysis, it was confirmed that the response floating lag time and D1hr is suggested to quadratic model and t90 is suggested to linear model. All the statistical formulations followed first order rate kinetics with non-Fickian diffusion mechanism. The desirability function was used to optimize the response variables, each having a different target, and the observed responses were highly agreed with experimental values. Statistically optimized formulation was characterized by FTIR and DSC studies and found no interactions between drug and polymer. The results demonstrate the feasibility of the model in the development of GRFDDS containing a propranolol HCl. Statistically optimized formulation was evaluated for in vivo buoyancy studies in healthy humans for both fed and fasted states. From the results, it was concluded that gastric residence time of the floating tablets were enhanced at fed stage but not in fasted state.

Highlights

  • Obesity has reached epidemic proportions and is still escalating at an alarming rate worldwide

  • Obesity is associated with chronic activation of low-grade inflammation [3], which is implicated in the pathogenesis of obesity-associated diseases including insulin resistance, type-2 diabetes (T2D) [4, 5] and cardiovascular disease [6, 7]

  • A numerous of studies has been shown that shortchain fatty acids (SCFAs) inhibit inflammation with focus on butyrate and to a lesser extent on acetate and Propionic Acid (PA), [16]

Read more

Summary

Introduction

Obesity has reached epidemic proportions and is still escalating at an alarming rate worldwide. In Palestine the prevalence of obesity has been shown to be approximately 4. The etiology of obesity and low-grade inflammation is complex and involves intrinsic and extrinsic factors. The colonization of germ-free mice with microbiota derived from obese mice results in significantly greater adiposity than colonization with microbiota from lean mice [12]. Prebiotic diets such as fructans [13] are associated with general better health, including the decrease in body weight, fat mass and the severity of T2D [14,15,16]. The factors that influence the composition and metabolism of intestinal

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call