Abstract

In electroweak baryogenesis, a domain wall between the spontaneously broken and unbroken phases acts as a separator of baryon (or lepton) number, generating a baryon asymmetry in the universe. If the wall is thin relative to plasma mean free paths, one computes baryon current into the broken phase by determining the quantum mechanical transmission of plasma components in the potential of the spatially changing Higgs VEV. We show that baryon current can also be obtained using a statistical density operator. This new formulation of the problem provides a consistent framework for studying the influence of quasiparticle lifetimes on baryon current. We show that when the plasma has no self-interactions, familiar results are reproduced. When plasma self-interactions are included, the baryon current into the broken phase is related to an imaginary time temperature Green's function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.