Abstract

In this chapter, we review the problem of network inference from time-course data, focusing on a class of graphical models known as dynamic Bayesian networks (DBNs). We discuss the relationship of DBNs to models based on ordinary differential equations, and consider extensions to nonlinear time dynamics. We provide an introduction to time-varying DBN models, which allow for changes to the network structure and parameters over time. We also discuss causal perspectives on network inference, including issues around model semantics that can arise due to missing variables. We present a case study of applying time-varying DBNs to gene expression measurements over the life cycle of Drosophila melanogaster. We finish with a discussion of future perspectives, including possible applications of time-varying network inference to single-cell gene expression data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call