Abstract

SUMMARYThis paper proposes a new set of probabilistic joint shear strength models using the conventional multiple linear regression method, and advanced machine‐learning methods of multivariate adaptive regression splines (MARS) and symbolic regression (SR). In order to achieve high‐fidelity regression models with reduced model errors and bias, this study constructs extensive experimental databases for reinforced and unreinforced concrete joints by collecting existing beam‐column joint subassemblage tests from multiple sources. Various influential parameters that affect joint shear strength such as material properties, design parameters, and joint configuration are investigated through tests of statistical significance. After performing a set of regression analyses, the comparison of simulation results indicates that MARS approach is the best estimation method. Moreover, the accuracy of analytical predictions of the derived MARS model is compared with that of existing joint shear strength relationships. The comparison results show that the proposed model is more accurate compared to existing relationships. This joint shear strength prediction model can be readily implemented into joint response models for evaluation of earthquake performance and inelastic responses of building frames. Copyright © 2014 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.