Abstract

This paper focuses on the modeling, simulation, and experimental verification of wideband single‐input single‐output (SISO) mobile fading channels for indoor propagation environments. The indoor reference channel model is derived from a geometrical rectangle scattering model, which consists of an infinite number of scatterers. It is assumed that the scatterers are exponentially distributed over the two‐dimensional (2D) horizontal plane of a rectangular room. Analytical expressions are derived for the probability density function (PDF) of the angle of arrival (AOA), the PDF of the propagation path length, the power delay profile (PDP), and the frequency correlation function (FCF). An efficient sum‐of‐cisoids (SOC) channel simulator is derived from the nonrealizable reference model by employing the SOC principle. It is shown that the SOC channel simulator approximates closely the reference model with respect to the FCF. The SOC channel simulator enables the performance evaluation of wideband indoor wireless communication systems with reduced realization expenditure. Moreover, the rationality and usefulness of the derived indoor channel model is confirmed by various measurements at 2.4, 5, and 60 GHz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.