Abstract

In this paper, we investigate the statistics of the free space optics (FSO) communication channel between a hovering unmanned aerial vehicle (UAV) and a central unit. Two unique characteristics make UAV-based FSO systems significantly different from conventional FSO systems with static transceivers. First, for UAV-based FSO systems, the incident laser beam is not always orthogonal to the receiver lens plane. Second, both position and orientation of the UAV fluctuate over time due to dynamic wind load, inherent random air fluctuations in the atmosphere around the UAV, and internal vibrations of the UAV. On the contrary, for conventional FSO systems, the laser beam is always perpendicular to the receiver lens plane and the relative movement of the transceivers is limited. In this paper, we develop a novel channel model for UAV-based FSO systems by quantifying the corresponding geometric and misalignment losses (GML), while taking into account the non-orthogonality of the laser beam and the random fluctuations of the position and orientation of the UAV. In particular, for diverse weather conditions, we propose different fluctuation models for the position and orientation of the UAV and derive corresponding statistical models for the GML. We further analyze the performance of a UAV-based FSO link in terms of outage probability and ergodic rate and simplify the resulting analytical expressions for the high signal-to-noise ratio (SNR) regime. Finally, simulations validate the accuracy of the presented analysis and provide important insights for system design. For instance, we show that for a given variance of the fluctuations, the beam width should be properly adjusted to minimize the outage probability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.