Abstract

The aim of this letter is to address the statistical modeling of the spectrum sensing energy consumption in cognitive radio networks. A Poisson point process has been shown to yield tractable and accurate results for the modeling of the interference in cognitive radio networks. We adopt this homogeneous stochastic process to develop an unified framework for deriving the energy consumption of the spectrum sensing in clustered cognitive radio networks. Furthermore, we extend the framework to multi-hop networks. The letter demonstrates that the spectrum sensing energy can be modeled as a Gamma-truncated distribution, as a function of the number of secondary users, their spatial density, and the number of hops of the cognitive radio network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.