Abstract

Thermochemistry determined from careful analysis of the energy dependence of cross sections for collision-induced dissociation (CID) reactions has primarily come from the primary dissociation channel. Higher order dissociations generally have thresholds measured to be higher than the thermodynamic limit because of the unknown internal and kinetic energy distributions of the primary products. A model that utilizes statistical theories for energy-dependent unimolecular decomposition to estimate these energy distributions is proposed in this paper. This permits a straightforward modeling of the cross sections for both primary and secondary dissociation channels. The model developed here is used to analyze data for K+(NH3)x, x=2-5, complexes, chosen because the thermochemistry previously determined by threshold CID studies agrees well with values from theory and equilibrium high pressure mass spectrometry. The model is found to reproduce the cross sections with high fidelity and the threshold values for secondary processes are found to be in excellent agreement with literature values. Furthermore, relative thresholds for higher order dissociation processes appear to provide accurate thermodynamic information as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.