Abstract
Reproduction by individuals is typically recorded as count data (e.g., number of fledglings from a nest or inflorescences on a plant) and commonly modeled using Poisson or negative binomial distributions, which assume that variance is greater than or equal to the mean. However, distributions of reproductive effort are often underdispersed (i.e., variance < mean). When used in hypothesis tests, models that ignore underdispersion will be overly conservative and may fail to detect significant patterns. Here we show that generalized Poisson (GP) and Conway-Maxwell-Poisson (CMP) distributions are better choices for modeling reproductive effort because they can handle both overdispersion and underdispersion; we provide examples of how ecologists can use GP and CMP distributions in generalized linear models (GLMs) and generalized linear mixed models (GLMMs) to quantify patterns in reproduction. Using a new R package, glmmTMB, we construct GLMMs to investigate how rainfall and population density influence the number of fledglings in the warbler Oreothlypis celata and how flowering rate of Heliconia acuminata differs between fragmented and continuous forest. We also demonstrate how to deal with zero-inflation, which occurs when there are more zeros than expected in the distribution, e.g., due to complete reproductive failure by some individuals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.