Abstract

In this paper, we present a novel statistical full-chip leakage power analysis method. The new method can provide a general framework to derive the full-chip leakage current or power in a closed form in terms of the variational parameters, such as the channel length, the gate oxide thickness, etc. It can accommodate various spatial correlations. The new method employs the orthogonal polynomials to represent the variational gate leakages in a closed form first, which is generated by a fast multi-dimensional Gaussian quadrature method. The total leakage currents then are computed by simply summing up the resulting orthogonal polynomials (their coefficients). Unlike many existing approaches, no grid-based partitioning and approximation are required. Instead, the spatial correlations are naturally handled by orthogonal decompositions. The proposed method is very efficient and it becomes linear in the presence of strong spatial correlations. Experimental results show that the proposed method is about 10× faster than the recently proposed method [4] with constant better accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.