Abstract

This paper presents a theoretical framework describing the tendency for synchronized positional rearrangements of any two structural species in a multicomponent glass-forming liquid. Such correlated motions are especially important as the glass-forming liquid approaches the glass transition. It is established that the expected cage-breaking probability of a structural unit is proportional to the dynamical propensity of the structural unit calculated via the isoconfigurational ensemble method. This theoretical framework supports the notion that spatial heterogeneities in composition result in dynamical heterogeneities, enabled by synchronized positional rearrangements. Using this model, an alkali borosilicate glass is investigated as an example, and results indicate that structural species with large differences in enthalpy might inhibit the expansion of cooperative rearranging regions and increase the number of such regions. The physical impact on relaxation time distribution and configurational entropy are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.