Abstract

The purpose of this work is developing of the statistical model of hydrogen diffusion in the crystal lattice of BCC metals with an estimate of the contribution of quantum effects and deviations from the Arrhenius equation. The values of the statistical model calculations of H diffusion coefficients in Fe, V, Nb and Ta are in good agreement with the experimental data. The statistical model can also explain deviations from the Arrhenius equation at temperatures 300-500 K in Fe and Nb. The downward deviation of the diffusion coefficient at 300K can be explained by the fact that the statistical model does not consider the tunneling effect at temperatures below 300K. It was suggested that thermally activated fast tunnelling transition of hydrogen atoms through the potential barrier at temperatures below 500 K provides an almost free movement of H atoms in the α-Fe and V. Using the statistical model allows for the prediction of the diffusion coefficient for H in BCC metals at intermediate temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.