Abstract
BackgroundNetwork motifs are small modules that show interesting functional and dynamic properties, and are believed to be the building blocks of complex cellular processes. However, the mechanistic details of such modules are often unknown: there is uncertainty about the motif architecture as well as the functional form and parameter values when converted to ordinary differential equations (ODEs). This translates into a number of candidate models being compatible with the system under study. A variety of statistical methods exist for ranking models including maximum likelihood-based and Bayesian methods. Our objective is to show how such methods can be applied in a typical systems biology setting.ResultsWe focus on four commonly occurring network motif structures and show that it is possible to differentiate between them using simulated data and any of the model comparison methods tested. We expand one of the motifs, the feed forward (FF) motif, for several possible parameterizations and apply model selection on simulated data. We then use experimental data on three biosynthetic pathways in Escherichia coli to formally assess how current knowledge matches the time series available. Our analysis confirms two of them as FF motifs. Only an expanded set of FF motif parameterisations using time delays is able to fit the third pathway, indicating that the true mechanism might be more complex in this case.ConclusionsMaximum likelihood as well as Bayesian model comparison methods are suitable for selecting a plausible motif model among a set of candidate models. Our work shows that it is practical to apply model comparison to test ideas about underlying mechanisms of biological pathways in a formal and quantitative way.
Highlights
Network motifs are small modules that show interesting functional and dynamic properties, and are believed to be the building blocks of complex cellular processes
Before we apply model comparison to specific dynamic models derived from biological network motifs (Section Results), we provide some background on statistical model comparison (Section Methods)
As we show in the simulations below the reciprocal importance sampler is suitable for the comparatively simple models which we investigate in this study
Summary
Network motifs are small modules that show interesting functional and dynamic properties, and are believed to be the building blocks of complex cellular processes. The mechanistic details of such modules are often unknown: there is uncertainty about the motif architecture as well as the functional form and parameter values when converted to ordinary differential equations (ODEs) This translates into a number of candidate models being compatible with the system under study. Bayesian approaches to problem solving have recently gained in popularity due to their inherent control of complexity and the ease with which any prior knowledge about the system under study can be incorported (for an introduction to Bayesian modelling see [15]). This prior information is derived either through literature surveys or through experimental observations
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.