Abstract

Statistical model based iterative reconstruction (MBIR) methods have been introduced to clinical CT systems and are being used in some clinical diagnostic applications. The purpose of this paper is to experimentally assess the unique spatial resolution characteristics of this nonlinear reconstruction method and identify its potential impact on the detectabilities and the associated radiation dose levels for specific imaging tasks. The thoracic section of a pediatric phantom was repeatedly scanned 50 or 100 times using a 64-slice clinical CT scanner at four different dose levels [CTDIvol =4, 8, 12, 16 (mGy)]. Both filtered backprojection (FBP) and MBIR (Veo(®), GE Healthcare, Waukesha, WI) were used for image reconstruction and results were compared with one another. Eight test objects in the phantom with contrast levels ranging from 13 to 1710 HU were used to assess spatial resolution. The axial spatial resolution was quantified with the point spread function (PSF), while the z resolution was quantified with the slice sensitivity profile. Both were measured locally on the test objects and in the image domain. The dependence of spatial resolution on contrast and dose levels was studied. The study also features a systematic investigation of the potential trade-off between spatial resolution and locally defined noise and their joint impact on the overall image quality, which was quantified by the image domain-based channelized Hotelling observer (CHO) detectability index d'. (1) The axial spatial resolution of MBIR depends on both radiation dose level and image contrast level, whereas it is supposedly independent of these two factors in FBP. The axial spatial resolution of MBIR always improved with an increasing radiation dose level and/or contrast level. (2) The axial spatial resolution of MBIR became equivalent to that of FBP at some transitional contrast level, above which MBIR demonstrated superior spatial resolution than FBP (and vice versa); the value of this transitional contrast highly depended on the dose level. (3) The PSFs of MBIR could be approximated as Gaussian functions with reasonably good accuracy. (4) Thez resolution of MBIR showed similar contrast and dose dependence. (5) Noise standard deviation assessed on the edges of objects demonstrated a trade-off with spatial resolution in MBIR. (5) When both spatial resolution and image noise were considered using the CHO analysis, MBIR led to significant improvement in the overall CT image quality for both high and low contrast detection tasks at both standard and low dose levels. Due to the intrinsic nonlinearity of the MBIR method, many well-known CT spatial resolution and noise properties have been modified. In particular, dose dependence and contrast dependence have been introduced to the spatial resolution of CT images by MBIR. The method has also introduced some novel noise-resolution trade-off not seen in traditional CT images. While the benefits of MBIR regarding the overall image quality, as demonstrated in this work, are significant, the optimal use of this method in clinical practice demands a thorough understanding of its unique physical characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.